You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
781 lines
21 KiB
781 lines
21 KiB
/* |
|
|
|
Copyright (c) 2007-2010 Michael G Schwern |
|
|
|
This software originally derived from Paul Sheer's pivotal_gmtime_r.c. |
|
|
|
The MIT License: |
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
of this software and associated documentation files (the "Software"), to deal |
|
in the Software without restriction, including without limitation the rights |
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
copies of the Software, and to permit persons to whom the Software is |
|
furnished to do so, subject to the following conditions: |
|
|
|
The above copyright notice and this permission notice shall be included in |
|
all copies or substantial portions of the Software. |
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
|
THE SOFTWARE. |
|
|
|
*/ |
|
|
|
/* |
|
|
|
Programmers who have available to them 64-bit time values as a 'long |
|
long' type can use cbson_localtime64_r() and cbson_gmtime64_r() which correctly |
|
converts the time even on 32-bit systems. Whether you have 64-bit time |
|
values will depend on the operating system. |
|
|
|
cbson_localtime64_r() is a 64-bit equivalent of localtime_r(). |
|
|
|
cbson_gmtime64_r() is a 64-bit equivalent of gmtime_r(). |
|
|
|
*/ |
|
|
|
#ifdef _MSC_VER |
|
#define _CRT_SECURE_NO_WARNINGS |
|
#endif |
|
|
|
/* Including Python.h fixes issues with interpreters built with -std=c99. */ |
|
#define PY_SSIZE_T_CLEAN |
|
#include "Python.h" |
|
|
|
#include <time.h> |
|
#include "time64.h" |
|
#include "time64_limits.h" |
|
|
|
|
|
/* Spec says except for stftime() and the _r() functions, these |
|
all return static memory. Stabbings! */ |
|
static struct TM Static_Return_Date; |
|
|
|
static const int days_in_month[2][12] = { |
|
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
|
{31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31}, |
|
}; |
|
|
|
static const int julian_days_by_month[2][12] = { |
|
{0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334}, |
|
{0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335}, |
|
}; |
|
|
|
static const int length_of_year[2] = { 365, 366 }; |
|
|
|
/* Some numbers relating to the gregorian cycle */ |
|
static const Year years_in_gregorian_cycle = 400; |
|
#define days_in_gregorian_cycle ((365 * 400) + 100 - 4 + 1) |
|
static const Time64_T seconds_in_gregorian_cycle = days_in_gregorian_cycle * 60LL * 60LL * 24LL; |
|
|
|
/* Year range we can trust the time functions with */ |
|
#define MAX_SAFE_YEAR 2037 |
|
#define MIN_SAFE_YEAR 1971 |
|
|
|
/* 28 year Julian calendar cycle */ |
|
#define SOLAR_CYCLE_LENGTH 28 |
|
|
|
/* Year cycle from MAX_SAFE_YEAR down. */ |
|
static const int safe_years_high[SOLAR_CYCLE_LENGTH] = { |
|
2016, 2017, 2018, 2019, |
|
2020, 2021, 2022, 2023, |
|
2024, 2025, 2026, 2027, |
|
2028, 2029, 2030, 2031, |
|
2032, 2033, 2034, 2035, |
|
2036, 2037, 2010, 2011, |
|
2012, 2013, 2014, 2015 |
|
}; |
|
|
|
/* Year cycle from MIN_SAFE_YEAR up */ |
|
static const int safe_years_low[SOLAR_CYCLE_LENGTH] = { |
|
1996, 1997, 1998, 1971, |
|
1972, 1973, 1974, 1975, |
|
1976, 1977, 1978, 1979, |
|
1980, 1981, 1982, 1983, |
|
1984, 1985, 1986, 1987, |
|
1988, 1989, 1990, 1991, |
|
1992, 1993, 1994, 1995, |
|
}; |
|
|
|
/* Let's assume people are going to be looking for dates in the future. |
|
Let's provide some cheats so you can skip ahead. |
|
This has a 4x speed boost when near 2008. |
|
*/ |
|
/* Number of days since epoch on Jan 1st, 2008 GMT */ |
|
#define CHEAT_DAYS (1199145600 / 24 / 60 / 60) |
|
#define CHEAT_YEARS 108 |
|
|
|
#define IS_LEAP(n) ((!(((n) + 1900) % 400) || (!(((n) + 1900) % 4) && (((n) + 1900) % 100))) != 0) |
|
#define _TIME64_WRAP(a,b,m) ((a) = ((a) < 0 ) ? ((b)--, (a) + (m)) : (a)) |
|
|
|
#ifdef USE_SYSTEM_LOCALTIME |
|
# define SHOULD_USE_SYSTEM_LOCALTIME(a) ( \ |
|
(a) <= SYSTEM_LOCALTIME_MAX && \ |
|
(a) >= SYSTEM_LOCALTIME_MIN \ |
|
) |
|
#else |
|
# define SHOULD_USE_SYSTEM_LOCALTIME(a) (0) |
|
#endif |
|
|
|
#ifdef USE_SYSTEM_GMTIME |
|
# define SHOULD_USE_SYSTEM_GMTIME(a) ( \ |
|
(a) <= SYSTEM_GMTIME_MAX && \ |
|
(a) >= SYSTEM_GMTIME_MIN \ |
|
) |
|
#else |
|
# define SHOULD_USE_SYSTEM_GMTIME(a) (0) |
|
#endif |
|
|
|
/* Multi varadic macros are a C99 thing, alas */ |
|
#ifdef TIME_64_DEBUG |
|
# define TIME64_TRACE(format) (fprintf(stderr, format)) |
|
# define TIME64_TRACE1(format, var1) (fprintf(stderr, format, var1)) |
|
# define TIME64_TRACE2(format, var1, var2) (fprintf(stderr, format, var1, var2)) |
|
# define TIME64_TRACE3(format, var1, var2, var3) (fprintf(stderr, format, var1, var2, var3)) |
|
#else |
|
# define TIME64_TRACE(format) ((void)0) |
|
# define TIME64_TRACE1(format, var1) ((void)0) |
|
# define TIME64_TRACE2(format, var1, var2) ((void)0) |
|
# define TIME64_TRACE3(format, var1, var2, var3) ((void)0) |
|
#endif |
|
|
|
|
|
static int is_exception_century(Year year) |
|
{ |
|
int is_exception = ((year % 100 == 0) && !(year % 400 == 0)); |
|
TIME64_TRACE1("# is_exception_century: %s\n", is_exception ? "yes" : "no"); |
|
|
|
return(is_exception); |
|
} |
|
|
|
|
|
/* Compare two dates. |
|
The result is like cmp. |
|
Ignores things like gmtoffset and dst |
|
*/ |
|
int cbson_cmp_date( const struct TM* left, const struct tm* right ) { |
|
if( left->tm_year > right->tm_year ) |
|
return 1; |
|
else if( left->tm_year < right->tm_year ) |
|
return -1; |
|
|
|
if( left->tm_mon > right->tm_mon ) |
|
return 1; |
|
else if( left->tm_mon < right->tm_mon ) |
|
return -1; |
|
|
|
if( left->tm_mday > right->tm_mday ) |
|
return 1; |
|
else if( left->tm_mday < right->tm_mday ) |
|
return -1; |
|
|
|
if( left->tm_hour > right->tm_hour ) |
|
return 1; |
|
else if( left->tm_hour < right->tm_hour ) |
|
return -1; |
|
|
|
if( left->tm_min > right->tm_min ) |
|
return 1; |
|
else if( left->tm_min < right->tm_min ) |
|
return -1; |
|
|
|
if( left->tm_sec > right->tm_sec ) |
|
return 1; |
|
else if( left->tm_sec < right->tm_sec ) |
|
return -1; |
|
|
|
return 0; |
|
} |
|
|
|
|
|
/* Check if a date is safely inside a range. |
|
The intention is to check if its a few days inside. |
|
*/ |
|
int cbson_date_in_safe_range( const struct TM* date, const struct tm* min, const struct tm* max ) { |
|
if( cbson_cmp_date(date, min) == -1 ) |
|
return 0; |
|
|
|
if( cbson_cmp_date(date, max) == 1 ) |
|
return 0; |
|
|
|
return 1; |
|
} |
|
|
|
|
|
/* timegm() is not in the C or POSIX spec, but it is such a useful |
|
extension I would be remiss in leaving it out. Also I need it |
|
for cbson_localtime64() |
|
*/ |
|
Time64_T cbson_timegm64(const struct TM *date) { |
|
Time64_T days = 0; |
|
Time64_T seconds = 0; |
|
Year year; |
|
Year orig_year = (Year)date->tm_year; |
|
int cycles = 0; |
|
|
|
if( orig_year > 100 ) { |
|
cycles = (int)((orig_year - 100) / 400); |
|
orig_year -= cycles * 400; |
|
days += (Time64_T)cycles * days_in_gregorian_cycle; |
|
} |
|
else if( orig_year < -300 ) { |
|
cycles = (int)((orig_year - 100) / 400); |
|
orig_year -= cycles * 400; |
|
days += (Time64_T)cycles * days_in_gregorian_cycle; |
|
} |
|
TIME64_TRACE3("# timegm/ cycles: %d, days: %lld, orig_year: %lld\n", cycles, days, orig_year); |
|
|
|
if( orig_year > 70 ) { |
|
year = 70; |
|
while( year < orig_year ) { |
|
days += length_of_year[IS_LEAP(year)]; |
|
year++; |
|
} |
|
} |
|
else if ( orig_year < 70 ) { |
|
year = 69; |
|
do { |
|
days -= length_of_year[IS_LEAP(year)]; |
|
year--; |
|
} while( year >= orig_year ); |
|
} |
|
|
|
days += julian_days_by_month[IS_LEAP(orig_year)][date->tm_mon]; |
|
days += date->tm_mday - 1; |
|
|
|
seconds = days * 60 * 60 * 24; |
|
|
|
seconds += date->tm_hour * 60 * 60; |
|
seconds += date->tm_min * 60; |
|
seconds += date->tm_sec; |
|
|
|
return(seconds); |
|
} |
|
|
|
|
|
#ifndef NDEBUG |
|
static int check_tm(struct TM *tm) |
|
{ |
|
/* Don't forget leap seconds */ |
|
assert(tm->tm_sec >= 0); |
|
assert(tm->tm_sec <= 61); |
|
|
|
assert(tm->tm_min >= 0); |
|
assert(tm->tm_min <= 59); |
|
|
|
assert(tm->tm_hour >= 0); |
|
assert(tm->tm_hour <= 23); |
|
|
|
assert(tm->tm_mday >= 1); |
|
assert(tm->tm_mday <= days_in_month[IS_LEAP(tm->tm_year)][tm->tm_mon]); |
|
|
|
assert(tm->tm_mon >= 0); |
|
assert(tm->tm_mon <= 11); |
|
|
|
assert(tm->tm_wday >= 0); |
|
assert(tm->tm_wday <= 6); |
|
|
|
assert(tm->tm_yday >= 0); |
|
assert(tm->tm_yday <= length_of_year[IS_LEAP(tm->tm_year)]); |
|
|
|
#ifdef HAS_TM_TM_GMTOFF |
|
assert(tm->tm_gmtoff >= -24 * 60 * 60); |
|
assert(tm->tm_gmtoff <= 24 * 60 * 60); |
|
#endif |
|
|
|
return 1; |
|
} |
|
#endif |
|
|
|
|
|
/* The exceptional centuries without leap years cause the cycle to |
|
shift by 16 |
|
*/ |
|
static Year cycle_offset(Year year) |
|
{ |
|
const Year start_year = 2000; |
|
Year year_diff = year - start_year; |
|
Year exceptions; |
|
|
|
if( year > start_year ) |
|
year_diff--; |
|
|
|
exceptions = year_diff / 100; |
|
exceptions -= year_diff / 400; |
|
|
|
TIME64_TRACE3("# year: %lld, exceptions: %lld, year_diff: %lld\n", |
|
year, exceptions, year_diff); |
|
|
|
return exceptions * 16; |
|
} |
|
|
|
/* For a given year after 2038, pick the latest possible matching |
|
year in the 28 year calendar cycle. |
|
|
|
A matching year... |
|
1) Starts on the same day of the week. |
|
2) Has the same leap year status. |
|
|
|
This is so the calendars match up. |
|
|
|
Also the previous year must match. When doing Jan 1st you might |
|
wind up on Dec 31st the previous year when doing a -UTC time zone. |
|
|
|
Finally, the next year must have the same start day of week. This |
|
is for Dec 31st with a +UTC time zone. |
|
It doesn't need the same leap year status since we only care about |
|
January 1st. |
|
*/ |
|
static int safe_year(const Year year) |
|
{ |
|
int safe_year = 0; |
|
Year year_cycle; |
|
|
|
if( year >= MIN_SAFE_YEAR && year <= MAX_SAFE_YEAR ) { |
|
return (int)year; |
|
} |
|
|
|
year_cycle = year + cycle_offset(year); |
|
|
|
/* safe_years_low is off from safe_years_high by 8 years */ |
|
if( year < MIN_SAFE_YEAR ) |
|
year_cycle -= 8; |
|
|
|
/* Change non-leap xx00 years to an equivalent */ |
|
if( is_exception_century(year) ) |
|
year_cycle += 11; |
|
|
|
/* Also xx01 years, since the previous year will be wrong */ |
|
if( is_exception_century(year - 1) ) |
|
year_cycle += 17; |
|
|
|
year_cycle %= SOLAR_CYCLE_LENGTH; |
|
if( year_cycle < 0 ) |
|
year_cycle = SOLAR_CYCLE_LENGTH + year_cycle; |
|
|
|
assert( year_cycle >= 0 ); |
|
assert( year_cycle < SOLAR_CYCLE_LENGTH ); |
|
if( year < MIN_SAFE_YEAR ) |
|
safe_year = safe_years_low[year_cycle]; |
|
else if( year > MAX_SAFE_YEAR ) |
|
safe_year = safe_years_high[year_cycle]; |
|
else |
|
assert(0); |
|
|
|
TIME64_TRACE3("# year: %lld, year_cycle: %lld, safe_year: %d\n", |
|
year, year_cycle, safe_year); |
|
|
|
assert(safe_year <= MAX_SAFE_YEAR && safe_year >= MIN_SAFE_YEAR); |
|
|
|
return safe_year; |
|
} |
|
|
|
|
|
void pymongo_copy_tm_to_TM64(const struct tm *src, struct TM *dest) { |
|
if( src == NULL ) { |
|
memset(dest, 0, sizeof(*dest)); |
|
} |
|
else { |
|
# ifdef USE_TM64 |
|
dest->tm_sec = src->tm_sec; |
|
dest->tm_min = src->tm_min; |
|
dest->tm_hour = src->tm_hour; |
|
dest->tm_mday = src->tm_mday; |
|
dest->tm_mon = src->tm_mon; |
|
dest->tm_year = (Year)src->tm_year; |
|
dest->tm_wday = src->tm_wday; |
|
dest->tm_yday = src->tm_yday; |
|
dest->tm_isdst = src->tm_isdst; |
|
|
|
# ifdef HAS_TM_TM_GMTOFF |
|
dest->tm_gmtoff = src->tm_gmtoff; |
|
# endif |
|
|
|
# ifdef HAS_TM_TM_ZONE |
|
dest->tm_zone = src->tm_zone; |
|
# endif |
|
|
|
# else |
|
/* They're the same type */ |
|
memcpy(dest, src, sizeof(*dest)); |
|
# endif |
|
} |
|
} |
|
|
|
|
|
void cbson_copy_TM64_to_tm(const struct TM *src, struct tm *dest) { |
|
if( src == NULL ) { |
|
memset(dest, 0, sizeof(*dest)); |
|
} |
|
else { |
|
# ifdef USE_TM64 |
|
dest->tm_sec = src->tm_sec; |
|
dest->tm_min = src->tm_min; |
|
dest->tm_hour = src->tm_hour; |
|
dest->tm_mday = src->tm_mday; |
|
dest->tm_mon = src->tm_mon; |
|
dest->tm_year = (int)src->tm_year; |
|
dest->tm_wday = src->tm_wday; |
|
dest->tm_yday = src->tm_yday; |
|
dest->tm_isdst = src->tm_isdst; |
|
|
|
# ifdef HAS_TM_TM_GMTOFF |
|
dest->tm_gmtoff = src->tm_gmtoff; |
|
# endif |
|
|
|
# ifdef HAS_TM_TM_ZONE |
|
dest->tm_zone = src->tm_zone; |
|
# endif |
|
|
|
# else |
|
/* They're the same type */ |
|
memcpy(dest, src, sizeof(*dest)); |
|
# endif |
|
} |
|
} |
|
|
|
|
|
/* Simulate localtime_r() to the best of our ability */ |
|
struct tm * cbson_fake_localtime_r(const time_t *time, struct tm *result) { |
|
const struct tm *static_result = localtime(time); |
|
|
|
assert(result != NULL); |
|
|
|
if( static_result == NULL ) { |
|
memset(result, 0, sizeof(*result)); |
|
return NULL; |
|
} |
|
else { |
|
memcpy(result, static_result, sizeof(*result)); |
|
return result; |
|
} |
|
} |
|
|
|
|
|
/* Simulate gmtime_r() to the best of our ability */ |
|
struct tm * cbson_fake_gmtime_r(const time_t *time, struct tm *result) { |
|
const struct tm *static_result = gmtime(time); |
|
|
|
assert(result != NULL); |
|
|
|
if( static_result == NULL ) { |
|
memset(result, 0, sizeof(*result)); |
|
return NULL; |
|
} |
|
else { |
|
memcpy(result, static_result, sizeof(*result)); |
|
return result; |
|
} |
|
} |
|
|
|
|
|
static Time64_T seconds_between_years(Year left_year, Year right_year) { |
|
int increment = (left_year > right_year) ? 1 : -1; |
|
Time64_T seconds = 0; |
|
int cycles; |
|
|
|
if( left_year > 2400 ) { |
|
cycles = (int)((left_year - 2400) / 400); |
|
left_year -= cycles * 400; |
|
seconds += cycles * seconds_in_gregorian_cycle; |
|
} |
|
else if( left_year < 1600 ) { |
|
cycles = (int)((left_year - 1600) / 400); |
|
left_year += cycles * 400; |
|
seconds += cycles * seconds_in_gregorian_cycle; |
|
} |
|
|
|
while( left_year != right_year ) { |
|
seconds += length_of_year[IS_LEAP(right_year - 1900)] * 60 * 60 * 24; |
|
right_year += increment; |
|
} |
|
|
|
return seconds * increment; |
|
} |
|
|
|
|
|
Time64_T cbson_mktime64(const struct TM *input_date) { |
|
struct tm safe_date; |
|
struct TM date; |
|
Time64_T time; |
|
Year year = input_date->tm_year + 1900; |
|
|
|
if( cbson_date_in_safe_range(input_date, &SYSTEM_MKTIME_MIN, &SYSTEM_MKTIME_MAX) ) |
|
{ |
|
cbson_copy_TM64_to_tm(input_date, &safe_date); |
|
return (Time64_T)mktime(&safe_date); |
|
} |
|
|
|
/* Have to make the year safe in date else it won't fit in safe_date */ |
|
date = *input_date; |
|
date.tm_year = safe_year(year) - 1900; |
|
cbson_copy_TM64_to_tm(&date, &safe_date); |
|
|
|
time = (Time64_T)mktime(&safe_date); |
|
|
|
time += seconds_between_years(year, (Year)(safe_date.tm_year + 1900)); |
|
|
|
return time; |
|
} |
|
|
|
|
|
/* Because I think mktime() is a crappy name */ |
|
Time64_T timelocal64(const struct TM *date) { |
|
return cbson_mktime64(date); |
|
} |
|
|
|
|
|
struct TM *cbson_gmtime64_r (const Time64_T *in_time, struct TM *p) |
|
{ |
|
int v_tm_sec, v_tm_min, v_tm_hour, v_tm_mon, v_tm_wday; |
|
Time64_T v_tm_tday; |
|
int leap; |
|
Time64_T m; |
|
Time64_T time = *in_time; |
|
Year year = 70; |
|
int cycles = 0; |
|
|
|
assert(p != NULL); |
|
|
|
#ifdef USE_SYSTEM_GMTIME |
|
/* Use the system gmtime() if time_t is small enough */ |
|
if( SHOULD_USE_SYSTEM_GMTIME(*in_time) ) { |
|
time_t safe_time = (time_t)*in_time; |
|
struct tm safe_date; |
|
GMTIME_R(&safe_time, &safe_date); |
|
|
|
pymongo_copy_tm_to_TM64(&safe_date, p); |
|
assert(check_tm(p)); |
|
|
|
return p; |
|
} |
|
#endif |
|
|
|
#ifdef HAS_TM_TM_GMTOFF |
|
p->tm_gmtoff = 0; |
|
#endif |
|
p->tm_isdst = 0; |
|
|
|
#ifdef HAS_TM_TM_ZONE |
|
p->tm_zone = "UTC"; |
|
#endif |
|
|
|
v_tm_sec = (int)(time % 60); |
|
time /= 60; |
|
v_tm_min = (int)(time % 60); |
|
time /= 60; |
|
v_tm_hour = (int)(time % 24); |
|
time /= 24; |
|
v_tm_tday = time; |
|
|
|
_TIME64_WRAP (v_tm_sec, v_tm_min, 60); |
|
_TIME64_WRAP (v_tm_min, v_tm_hour, 60); |
|
_TIME64_WRAP (v_tm_hour, v_tm_tday, 24); |
|
|
|
v_tm_wday = (int)((v_tm_tday + 4) % 7); |
|
if (v_tm_wday < 0) |
|
v_tm_wday += 7; |
|
m = v_tm_tday; |
|
|
|
if (m >= CHEAT_DAYS) { |
|
year = CHEAT_YEARS; |
|
m -= CHEAT_DAYS; |
|
} |
|
|
|
if (m >= 0) { |
|
/* Gregorian cycles, this is huge optimization for distant times */ |
|
cycles = (int)(m / (Time64_T) days_in_gregorian_cycle); |
|
if( cycles ) { |
|
m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
|
year += (cycles * years_in_gregorian_cycle); |
|
} |
|
|
|
/* Years */ |
|
leap = IS_LEAP (year); |
|
while (m >= (Time64_T) length_of_year[leap]) { |
|
m -= (Time64_T) length_of_year[leap]; |
|
year++; |
|
leap = IS_LEAP (year); |
|
} |
|
|
|
/* Months */ |
|
v_tm_mon = 0; |
|
while (m >= (Time64_T) days_in_month[leap][v_tm_mon]) { |
|
m -= (Time64_T) days_in_month[leap][v_tm_mon]; |
|
v_tm_mon++; |
|
} |
|
} else { |
|
year--; |
|
|
|
/* Gregorian cycles */ |
|
cycles = (int)((m / (Time64_T) days_in_gregorian_cycle) + 1); |
|
if( cycles ) { |
|
m -= (cycles * (Time64_T) days_in_gregorian_cycle); |
|
year += (cycles * years_in_gregorian_cycle); |
|
} |
|
|
|
/* Years */ |
|
leap = IS_LEAP (year); |
|
while (m < (Time64_T) -length_of_year[leap]) { |
|
m += (Time64_T) length_of_year[leap]; |
|
year--; |
|
leap = IS_LEAP (year); |
|
} |
|
|
|
/* Months */ |
|
v_tm_mon = 11; |
|
while (m < (Time64_T) -days_in_month[leap][v_tm_mon]) { |
|
m += (Time64_T) days_in_month[leap][v_tm_mon]; |
|
v_tm_mon--; |
|
} |
|
m += (Time64_T) days_in_month[leap][v_tm_mon]; |
|
} |
|
|
|
p->tm_year = (int)year; |
|
if( p->tm_year != year ) { |
|
#ifdef EOVERFLOW |
|
errno = EOVERFLOW; |
|
#endif |
|
return NULL; |
|
} |
|
|
|
/* At this point m is less than a year so casting to an int is safe */ |
|
p->tm_mday = (int) m + 1; |
|
p->tm_yday = julian_days_by_month[leap][v_tm_mon] + (int)m; |
|
p->tm_sec = v_tm_sec; |
|
p->tm_min = v_tm_min; |
|
p->tm_hour = v_tm_hour; |
|
p->tm_mon = v_tm_mon; |
|
p->tm_wday = v_tm_wday; |
|
|
|
assert(check_tm(p)); |
|
|
|
return p; |
|
} |
|
|
|
|
|
struct TM *cbson_localtime64_r (const Time64_T *time, struct TM *local_tm) |
|
{ |
|
time_t safe_time; |
|
struct tm safe_date; |
|
struct TM gm_tm; |
|
Year orig_year; |
|
int month_diff; |
|
|
|
assert(local_tm != NULL); |
|
|
|
#ifdef USE_SYSTEM_LOCALTIME |
|
/* Use the system localtime() if time_t is small enough */ |
|
if( SHOULD_USE_SYSTEM_LOCALTIME(*time) ) { |
|
safe_time = (time_t)*time; |
|
|
|
TIME64_TRACE1("Using system localtime for %lld\n", *time); |
|
|
|
LOCALTIME_R(&safe_time, &safe_date); |
|
|
|
pymongo_copy_tm_to_TM64(&safe_date, local_tm); |
|
assert(check_tm(local_tm)); |
|
|
|
return local_tm; |
|
} |
|
#endif |
|
|
|
if( cbson_gmtime64_r(time, &gm_tm) == NULL ) { |
|
TIME64_TRACE1("cbson_gmtime64_r returned null for %lld\n", *time); |
|
return NULL; |
|
} |
|
|
|
orig_year = gm_tm.tm_year; |
|
|
|
if (gm_tm.tm_year > (2037 - 1900) || |
|
gm_tm.tm_year < (1970 - 1900) |
|
) |
|
{ |
|
TIME64_TRACE1("Mapping tm_year %lld to safe_year\n", (Year)gm_tm.tm_year); |
|
gm_tm.tm_year = safe_year((Year)(gm_tm.tm_year + 1900)) - 1900; |
|
} |
|
|
|
safe_time = (time_t)cbson_timegm64(&gm_tm); |
|
if( LOCALTIME_R(&safe_time, &safe_date) == NULL ) { |
|
TIME64_TRACE1("localtime_r(%d) returned NULL\n", (int)safe_time); |
|
return NULL; |
|
} |
|
|
|
pymongo_copy_tm_to_TM64(&safe_date, local_tm); |
|
|
|
local_tm->tm_year = (int)orig_year; |
|
if( local_tm->tm_year != orig_year ) { |
|
TIME64_TRACE2("tm_year overflow: tm_year %lld, orig_year %lld\n", |
|
(Year)local_tm->tm_year, (Year)orig_year); |
|
|
|
#ifdef EOVERFLOW |
|
errno = EOVERFLOW; |
|
#endif |
|
return NULL; |
|
} |
|
|
|
|
|
month_diff = local_tm->tm_mon - gm_tm.tm_mon; |
|
|
|
/* When localtime is Dec 31st previous year and |
|
gmtime is Jan 1st next year. |
|
*/ |
|
if( month_diff == 11 ) { |
|
local_tm->tm_year--; |
|
} |
|
|
|
/* When localtime is Jan 1st, next year and |
|
gmtime is Dec 31st, previous year. |
|
*/ |
|
if( month_diff == -11 ) { |
|
local_tm->tm_year++; |
|
} |
|
|
|
/* GMT is Jan 1st, xx01 year, but localtime is still Dec 31st |
|
in a non-leap xx00. There is one point in the cycle |
|
we can't account for which the safe xx00 year is a leap |
|
year. So we need to correct for Dec 31st coming out as |
|
the 366th day of the year. |
|
*/ |
|
if( !IS_LEAP(local_tm->tm_year) && local_tm->tm_yday == 365 ) |
|
local_tm->tm_yday--; |
|
|
|
assert(check_tm(local_tm)); |
|
|
|
return local_tm; |
|
} |
|
|
|
|
|
int cbson_valid_tm_wday( const struct TM* date ) { |
|
if( 0 <= date->tm_wday && date->tm_wday <= 6 ) |
|
return 1; |
|
else |
|
return 0; |
|
} |
|
|
|
int cbson_valid_tm_mon( const struct TM* date ) { |
|
if( 0 <= date->tm_mon && date->tm_mon <= 11 ) |
|
return 1; |
|
else |
|
return 0; |
|
} |
|
|
|
|
|
/* Non-thread safe versions of the above */ |
|
struct TM *cbson_localtime64(const Time64_T *time) { |
|
#ifdef _MSC_VER |
|
_tzset(); |
|
#else |
|
tzset(); |
|
#endif |
|
return cbson_localtime64_r(time, &Static_Return_Date); |
|
} |
|
|
|
struct TM *cbson_gmtime64(const Time64_T *time) { |
|
return cbson_gmtime64_r(time, &Static_Return_Date); |
|
}
|
|
|